Unlayering of the ozone: an earth sans sunscreen.

AuthorShanklin, Jonathan

The formation of the Antarctic ozone hole is a graphic demonstration of how rapidly we can change the atmosphere of our planet. There are many other environmental issues facing us today and we must link them together to understand and debate the underlying causes, rather than treat each issue in isolation. Antarctica is a wonderful continent. Glaciers carve their way to the sea where the waters teem with penguins and whales. Although 70 per cent of the world's fresh water resides in the polar ice cap, the continent is a veritable desert, with liquid water in short supply. The frozen ice takes on many shades, from the brilliant white of freshly fallen snow to the deep indigo at the bottom of a gaping crevasse. This land of contrasts is where the Antarctic ozone hole was discovered.

Ozone is a form of oxygen, similar to the gas that we breathe, but with three atoms instead of two. This makes it highly reactive, and in high concentration it is a toxic gas. When formed by air pollution near the surface it can trigger asthma attacks, but high in the atmosphere it forms a protective sun-shield. This is the ozone layer, a region from about 10 to 35 kilometres in altitude, where the natural concentration of ozone is highest. Ozone forms at this level in the stratosphere through the action of ultraviolet sunlight on oxygen gas, and in the process the most harmful ultraviolet radiation is totally absorbed. Some ultraviolet light does reach the surface, and the intensity is controlled by the amount of ozone--the more ozone the less ultraviolet, and vice-versa. With a thinning ozone layer more ultraviolet light reaches the surface, exposing us to a greater risk of sunburn, skin cancers or cataracts of the eye.

Ozone observation in the Antarctic began over fifty years ago with the International Geophysical Year of 1957-58. As part of this scientific endeavour, a network of observatories was set up across Antarctica, several of which measured ozone. One of the first to report was the British research station Halley, and the results from the first year of operation showed a surprising difference to those from the equivalent latitude in the Arctic. This was soon recognized as being due to a different stratospheric circulation in the atmosphere above the two poles: in the north the circulation is relatively complex, whilst in the south it is relatively simple with a strong, long lasting winter polar vortex or a large-scale persistent cyclone.

Ozone...

To continue reading

Request your trial

VLEX uses login cookies to provide you with a better browsing experience. If you click on 'Accept' or continue browsing this site we consider that you accept our cookie policy. ACCEPT